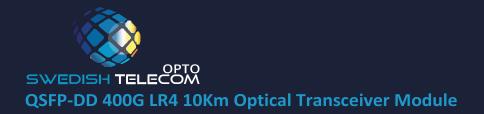



## **Features**


- QSFP-DD MSA compliant
- ► 4 CWDM lanes MUX/DEMUX design
- ► 100G Lambda MSA 400G-LR4 Specification compliant
- Up to 10km transmission on single mode fiber (SMF) with FEC
- ► Operating case temperature: 0 to 70°C
- ► 8x53.125Gb/s electrical interface (400GAUI-8)
- ► Data Rate 106.25Gbps (PAM4) per channel.
- Maximum power consumption 12W
- Duplex LC connector
- ► RoHS compliant

## **Applications**

- Data Center Interconnect
- ► 400G Ethernet
- ► Infiniband interconnects
- Enterprise networking

#### Part Number Ordering Information

| STC-400G-XXX | 400G QSFP-DD LR4 10km with FEC optical transceiver with full real-time digital diagnostic monitoring and pull tab |
|--------------|-------------------------------------------------------------------------------------------------------------------|
|--------------|-------------------------------------------------------------------------------------------------------------------|



#### **1. General Description**

This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 10km optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of CWDM optical signals, and multiplexes them into a single channel for 400Gb/s optical transmission. Reversely, on the receiver side, the module optically demultiplexes a 400Gb/s optical input into 4 channels of CWDM optical signals, and converts them to 8 channels of 50Gb/s (PAM4) electrical output data.

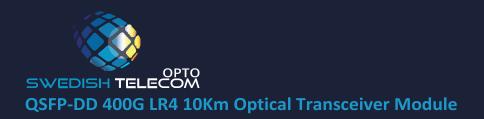
The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. Host FEC is required to support up to 10km fiber transmission

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

#### 2. Functional Description

The module incorporates 4 independent channels on CWDM4 1271/1291/1311/1331nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver and EML lasers together with an optical multiplexer. On the receiver path, an optical demultiplexer is coupled to a 4 channel photodiode array. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and also an 8-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3bs and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant to IEEE 802.3bs with duplex LC connector.

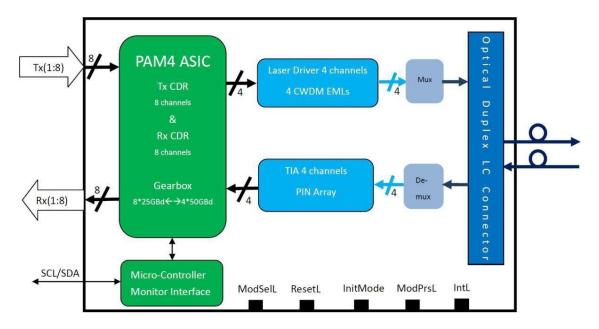
A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.


Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

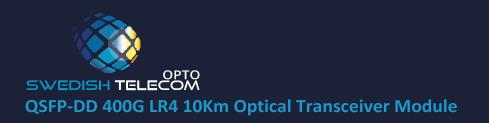
The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the output and must be pulled to the Host Vcc voltage on the Host board.execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data\_Not\_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host


software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High

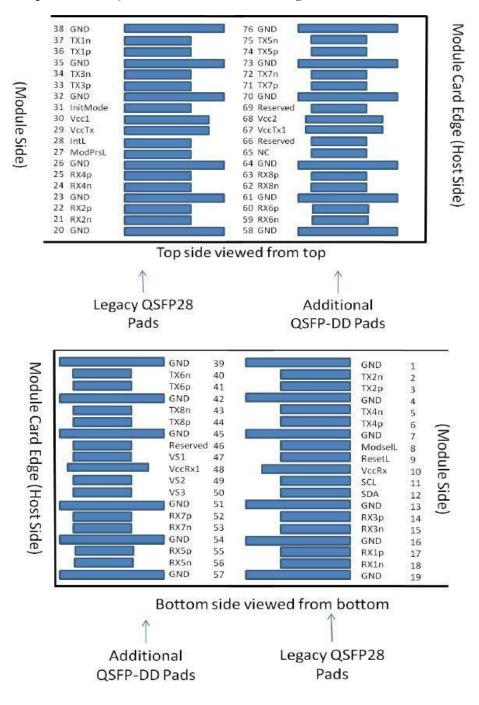


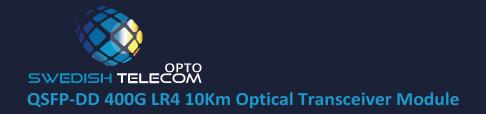
Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signaldescription.


Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low"state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector




## 3. Transceiver Block Diagram


Figure 1. Transceiver Block Diagram



### 4. Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.





## 5. Pin Definition

| Pin # | Logic   | Symbol   | Description                         | Plug Sequence | Notes |
|-------|---------|----------|-------------------------------------|---------------|-------|
| 1     |         | GND      | Ground                              | 1B            | 1     |
| 2     | CML-I   | Tx2n     | Transmitter Inverted Data Input     | 3B            |       |
| 3     | CML-I   | Tx2p     | Transmitter Non-Inverted Data       | 3B            |       |
|       |         | -        | Input                               |               |       |
| 4     |         | GND      | Ground                              | 1B            | 1     |
| 5     | CML-I   | Tx4n     | Transmitter Inverted Data Input     | 3B            |       |
| 6     | CML-I   | Tx4p     | Transmitter Non-Inverted Data       | 3B            |       |
|       |         | _        | Input                               |               |       |
| 7     |         | GND      | Ground                              | 1B            | 1     |
| 8     | LVTTL-I | ModSelL  | Module Select                       | 3B            |       |
| 9     | LVTTL-I | ResetL   | Module Reset                        | 3B            |       |
| 10    |         | VccRx    | +3.3V Power Supply Receiver         | 2B            | 2     |
| 11    | LVCMOS- | SCL      | 2-wire serial interface clock       | 3B            |       |
|       | I/O     |          |                                     |               |       |
| 12    | LVCMOS- | SDA      | 2-wire serial interface data        | 3B            |       |
|       | I/O     |          |                                     |               |       |
| 13    |         | GND      | Ground                              | 1B            | 1     |
| 14    | CML-O   | Rx3p     | Receiver Non-Inverted Data Output   | 3B            |       |
| 15    | CML-O   | Rx3n     | Receiver Inverted Data Output       | 3B            |       |
| 16    | GND     | Ground   | 1B                                  |               | 1     |
| 17    | CML-O   | Rx1p     | Receiver Non-Inverted Data Output   | 3B            |       |
| 18    | CML-O   | Rx1n     | Receiver Inverted Data Output       | 3B            |       |
| 19    |         | GND      | Ground                              | 1B            | 1     |
| 20    |         | GND      | Ground                              | 1B            | 1     |
| 21    | CML-O   | Rx2n     | Receiver Inverted Data Output       | 3B            |       |
| 22    | CML-O   | Rx2p     | Receiver Non-Inverted Data Output   | 3B            |       |
| 23    |         | GND      | Ground                              | 1B            | 1     |
| 24    | CML-O   | Rx4n     | Receiver Inverted Data Output       | 3B            |       |
| 25    | CML-O   | Rx4p     | Receiver Non-Inverted Data Output   | 3B            |       |
| 26    |         | GND      | Ground                              | 1B            | 1     |
| 27    | LVTTL-O | ModPrsL  | Module Present                      | 3B            |       |
| 28    | LVTTL-O | IntL     | Interrupt                           | 3B            |       |
| 29    |         | VccTx    | +3.3V Power supply transmitter      | 2B            | 2     |
| 30    |         | Vcc1     | +3.3V Power supply                  | 2B            | 2     |
| 31    | LVTTL-I | InitMode | Initialization mode; In legacy QSFP | 3B            |       |
|       |         |          | applications, the InitMode pad is   |               |       |
|       |         |          | called LPMODE                       |               |       |
| 32    |         | GND      | Ground                              | 1B            | 1     |



## QSFP-DD 400G LR4 10Km Optical Transceiver Module

| 33 | CML-I | Tx3p         | Transmitter Non-Inverted Data<br>Input | 3B |   |
|----|-------|--------------|----------------------------------------|----|---|
| 34 | CML-I | Tx3n         | Transmitter Inverted Data Input        | 3B |   |
| 35 |       | GND          | Ground                                 | 1B | 1 |
| 36 | CML-I | Tx1p         | Transmitter Non-Inverted Data<br>Input | 3B |   |
| 37 | CML-I | Tx1n         | Transmitter Inverted Data Input        | 3B |   |
| 38 |       | GND          | Ground                                 | 1B | 1 |
| 39 |       | GND          | Ground                                 | 1A | 1 |
| 40 | CML-I | Tx6n         | Transmitter Inverted Data Input        | 3A |   |
| 41 | CML-I | Тхбр         | Transmitter Non-Inverted Data<br>Input | 3A |   |
| 42 |       | GND          | Ground                                 | 1A | 1 |
| 43 | CML-I | Tx8n         | Transmitter Inverted Data Input        | 3A |   |
| 44 | CML-I | Tx8p         | Transmitter Non-Inverted Data<br>Input | 3A |   |
| 45 |       | GND          | Ground                                 | 1A | 1 |
| 46 |       | Reserved     | For future use                         | 3A | 3 |
| 47 |       | VS1          | Module Vendor Specific 1               | 3A | 3 |
| 48 |       | VccRx1       | 3.3V Power Supply                      | 2A | 2 |
| 49 |       | VS2          | Module Vendor Specific 2               | 3A | 3 |
| 50 |       | VS3          | Module Vendor Specific 3               | 3A | 3 |
| 51 |       | GND          | Ground                                 | 1A | 1 |
| 52 | CML-O | Rx7p         | Receiver Non-Inverted Data Output      | 3A |   |
| 53 | CML-O | Rx7n         | Receiver Inverted Data Output          | 3A |   |
| 54 |       | GND          | Ground                                 | 1A | 1 |
| 55 | CML-O | Rx5p         | Receiver Non-Inverted Data Output      | 3A |   |
| 56 | CML-O | Rx5n         | Receiver Inverted Data Output          | 3A |   |
| 57 |       | GND          | Ground                                 | 1A | 1 |
| 58 |       | GND          | Ground                                 | 1A | 1 |
| 59 | CML-O | Rx6n         | Receiver Inverted Data Output          | 3A |   |
| 60 | CML-O | <b>R</b> x6p | Receiver Non-Inverted Data Output      | 3A |   |
| 61 |       | GND          | Ground                                 | 1A | 1 |
| 62 | CML-O | Rx8n         | Receiver Inverted Data Output          | 3A |   |
| 63 | CML-O | Rx8p         | Receiver Non-Inverted Data Output      | 3A |   |
| 64 |       | GND          | Ground                                 | 1A | 1 |



# SWEDISH TELECOM QSFP-DD 400G LR4 10Km Optical Transceiver Module

| 65 |       | NC       | No Connect                             | 3A | 3 |
|----|-------|----------|----------------------------------------|----|---|
| 66 |       | Reserved | For future use                         | 3A | 3 |
| 67 |       | VccTx1   | 3.3V Power Supply                      | 2A | 2 |
| 68 |       | Vcc2     | 3.3V Power Supply                      | 2A | 2 |
| 69 |       | Reserved | For Future Use                         | 3A | 3 |
| 70 |       | GND      | Ground                                 | 1A | 1 |
| 71 | CML-I | Tx7p     | Transmitter Non-Inverted Data<br>Input | 3A |   |
| 72 | CML-I | Tx7n     | Transmitter Inverted Data Input        | 3A |   |
| 73 |       | GND      | Ground                                 | 1A | 1 |
| 74 | CML-I | Tx5p     | Transmitter Non-Inverted Data<br>Input | 3A |   |
| 75 | CML-I | Tx5n     | Transmitter Inverted Data Input        | 3A |   |
| 76 |       | GND      | Ground                                 | 1A | 1 |

## 6. Recommended Power Supply Filter

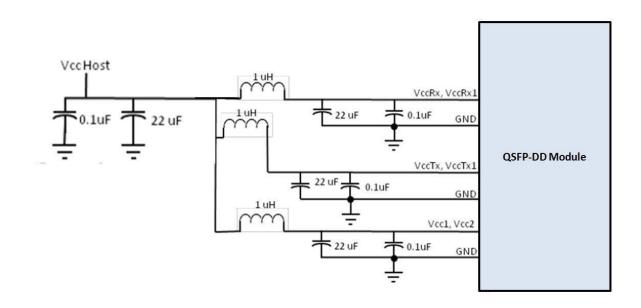



Figure 3. Recommended Power Supply Filter



#### 7. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratingsmight cause permanent damage to this module.

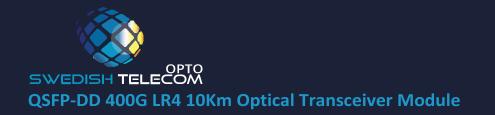
| Parameter                            | Symbol | Min  | Max | Units | Notes |
|--------------------------------------|--------|------|-----|-------|-------|
| Storage Temperature                  | TS     | -40  | 85  | degC  |       |
| Operating Case Temperature           | ТОР    | 0    | 70  | degC  |       |
| Power Supply Voltage                 | VCC    | -0.5 | 3.6 | V     |       |
| Relative Humidity (non-condensation) | RH     | 0    | 85  | %     |       |
| Damage Threshold, each Lane          | THd    | 5.0  |     | dBm   |       |

## 8. Recommended Operating Conditions and Power Supply Requirements

| Parameter                  | Symbol | Min   | Typical | Max      | Units | Notes |
|----------------------------|--------|-------|---------|----------|-------|-------|
| Operating Case Temperature | ТОР    | 0     |         | 70       | degC  |       |
| Power Supply Voltage       | VCC    | 3.135 | 3.3     | 3.465    | V     |       |
| Data Rate, each Lane       |        |       | 26.5625 |          | GBd   | PAM4  |
| Data Rate Accuracy         |        | -100  |         | 100      | ppm   |       |
| Pre-FEC Bit Error Ratio    |        |       |         | 2.4x10-4 |       |       |
| Post-FEC Bit Error Ratio   |        |       |         | 1x10-12  |       | 1     |
| Link Distance              | D      | 0.002 |         | 10       | km    | 2     |

#### Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.


## 9. Electrical Characteristics

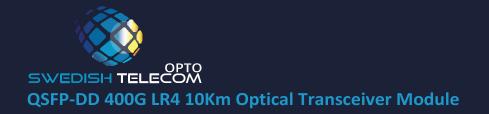
# The following electrical characteristics are defined over the Recommended OperatingEnvironment unless otherwise specified.

| Parameter                       | TestPoint | Min               | Typical | Max  | Units | Notes |
|---------------------------------|-----------|-------------------|---------|------|-------|-------|
| Power Consumption               |           |                   |         | 12   | W     |       |
| Supply Current                  | Icc       |                   |         | 3.64 | А     |       |
| Transmitter (each Lane)         |           |                   |         |      |       |       |
| Signaling Rate, each Lane       | TP1       | $26.5625 \pm 100$ | ppm     |      | GBd   |       |
| Differential pk-pk InputVoltage | TP1a      | 900               |         |      | mVpp  | 1     |
| Tolerance                       |           |                   |         |      |       |       |

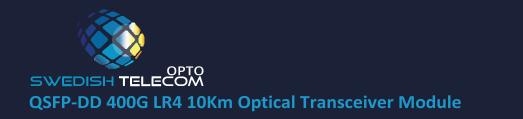


| Differential Termination        | TP1  |                   |              | 10   | %    |   |
|---------------------------------|------|-------------------|--------------|------|------|---|
| Mismatch                        |      |                   |              |      |      |   |
|                                 |      | IEEE 802.3-       |              |      |      |   |
| Differential Input Return Loss  | TP1  | 2015              |              |      | dB   |   |
|                                 |      | Equation          |              |      |      |   |
|                                 |      | (83E-5)           |              |      |      |   |
|                                 |      | IEEE 802.3-       |              |      |      |   |
| Differential to CommonMode      | TP1  | 2015              |              |      | dB   |   |
| Input Return Loss               |      | Equation          |              |      |      |   |
|                                 |      | (83E-6)           |              |      |      |   |
| Module Stressed Input Test      | TP1a | See IEEE 802      | .3bs 120E.3. | 4.1  |      | 2 |
| Single-ended Voltage Tolerance  | TP1a | -0.4 to 3.3       |              |      | V    |   |
| Range (Min)                     |      |                   |              |      |      |   |
| DC Common Mode InputVoltage     | TP1  | -350              |              | 2850 | mV   | 3 |
| Receiver (each Lane)            |      |                   |              |      |      |   |
| Signaling Rate, each lane       | TP4  | $26.5625 \pm 100$ | ) ppm        |      | GBd  |   |
| Differential Peak-to-PeakOutput | TP4  |                   |              | 900  | mVpp |   |
| Voltage                         |      |                   |              |      |      |   |
| AC Common Mode Output           | TP4  |                   |              | 17.5 | mV   |   |
| Voltage, RMS                    |      |                   |              |      |      |   |
| Differential Termination        | TP4  |                   |              | 10   | %    |   |
| Mismatch                        |      |                   |              |      |      |   |
|                                 |      | IEEE 802.3-       |              |      |      |   |
| Differential Output ReturnLoss  | TP4  | 2015              |              |      |      |   |
|                                 |      | Equation          |              |      |      |   |
|                                 |      | (83E-2)           |              |      |      |   |
| Common to Differential Mode     |      | IEEE 802.3-       |              |      |      |   |
| Conversion ReturnLoss           | TP4  | 2015              |              |      |      |   |
|                                 |      | Equation          |              |      |      |   |
|                                 |      | (83E-3)           |              |      |      |   |
| Transition Time, 20% to 80%     | TP4  | 9.5               |              |      | ps   |   |
| Near-end Eye Symmetry           | TP4  |                   | 0.265        |      | ŬI   |   |
| Mask Width (ESMW)               |      |                   |              |      |      |   |
| Near-end Eye Height,            | TP4  | 70                |              |      | mV   |   |
| Differential                    |      |                   |              |      |      |   |




| Far-end Eye Symmetry Mask<br>Width (ESMW) | TP4 |      | 0.2 |      | UI |   |
|-------------------------------------------|-----|------|-----|------|----|---|
| Far-end Eye Height,<br>Differential       | TP4 | 30   |     |      | mV |   |
| Far-end Pre-cursor ISI Ratio              | TP4 | -4.5 |     | 2.5  | %  |   |
| Common Mode Output<br>Voltage (Vcm)       | TP4 | -350 |     | 2850 | mV | 3 |

Notes:


- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Qorscrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effectsofground offset voltage.

## **10. Optical Characteristics**

| Parameter                                                                        | Symbol | Min        | Typical | Max    | Units | Notes |
|----------------------------------------------------------------------------------|--------|------------|---------|--------|-------|-------|
|                                                                                  | LO     | 1264.5     | 1271    | 1277.5 | nm    |       |
| Wavelength Assignment                                                            | L1     | 1284.5     | 1291    | 1297.5 | nm    |       |
|                                                                                  | L2     | 1304.5     | 1311    | 1317.5 | nm    |       |
|                                                                                  | L3     | 1324.5     | 1331    | 1337.5 | nm    |       |
| Transmitter                                                                      |        |            |         |        |       |       |
| Data Rate, each Lane                                                             |        | 53.125 ± 1 | 00 ppm  |        | GBd   |       |
| Modulation Format                                                                |        | PAM4       |         |        |       |       |
| Side-mode Suppression Ratio                                                      | SMSR   | 30         |         |        | dB    |       |
| Total Average Launch Power                                                       | PT     |            |         | 10.0   | dBm   |       |
| Average Launch Power, each Lane                                                  | PAVG   | -2.8       |         | 4.0    | dBm   | 1     |
| Outer Optical Modulation Amplitude                                               | POMA   | 0.2        |         | 4.2    | dBm   | 2     |
| (OMA <sub>outer</sub> ), each Lane<br>Launch Power in OMA <sub>outer</sub> minus |        |            |         |        |       |       |
| TDECQ, each Lane                                                                 |        | -1.2       |         |        | dB    |       |
| for $ER \ge 4.5 dB$ for $ER < 4.5 dB$                                            |        | -1.1       |         |        |       |       |
| Transmitter and Dispersion EyeClosure<br>for PAM4, each Lane                     | TDECQ  |            |         | 3.9    | dB    |       |
| $TDECQ - 10*log_{10}(C_{eq})$ , each Lane                                        |        |            |         | 3.9    | dB    | 3     |



| Extinction Ratio                                                             | ER   | 3.5      |         |              | dB    |   |
|------------------------------------------------------------------------------|------|----------|---------|--------------|-------|---|
| Difference in Launch Powerbetween<br>any Two Lanes (OMA <sub>outer</sub> )   |      |          |         | 4            | dB    |   |
| RIN15.6OMA                                                                   | RIN  |          |         | -136         | dB/Hz |   |
| Optical Return Loss Tolerance                                                | TOL  |          |         | 15.6         | dB    |   |
| Transmitter Reflectance                                                      | RŢ   |          |         | -26          | dB    |   |
| Transmitter Transition Time                                                  |      |          |         | 17           | ps    |   |
| Average Launch Power of OFF<br>Transmitter, each Lane                        | Poff |          |         | -20          | dBm   |   |
| Receiver                                                                     |      |          | -       |              | 1     |   |
| Data Rate, each Lane                                                         |      | 53.125 ± | 100 ppm |              | GBd   |   |
| Modulation Format                                                            |      | PAM4     |         |              |       |   |
| Damage Threshold, each Lane                                                  | THd  | 5.0      |         |              | dBm   | 4 |
| Average Receive Power, each Lane                                             |      | -9.1     |         | 4.0          | dBm   | 5 |
| Receive Power (OMA <sub>outer</sub> ), eachLane                              |      |          |         | 4.2          | dBm   |   |
| Difference in Receiver Powerbetween<br>any Two Lanes (OMA <sub>outer</sub> ) |      |          |         | 4.6          | dB    |   |
| Receiver Sensitivity (OMA <sub>outer</sub> ),each<br>Lane                    | SEN  |          |         | Equation (1) | dBm   | 6 |
| Stressed Receiver Sensitivity<br>(OMA <sub>outer</sub> ), each Lane          | SRS  |          |         | -4.1         | dBm   | 7 |
| Receiver Reflectance                                                         | RR   |          |         | -26          | dB    |   |
| LOS Assert                                                                   | LOSA | -20      |         |              | dBm   |   |
| LOS De-assert                                                                | LOSD |          |         | -12.1        | dBm   |   |



| LOS Hysteresis                                           | LOSH           | 0.5        |     |     | dB  |  |
|----------------------------------------------------------|----------------|------------|-----|-----|-----|--|
| Stressed Conditions for Stress Receive                   | er Sensitivity | y (Note 8) |     |     |     |  |
| Stressed Eye Closure for PAM4<br>(SECQ), Lane under Test |                |            | 3.9 |     | dB  |  |
| $\frac{SECQ - 10*log_{10}(C_{eq}), Lane under}{Test}$    |                |            |     | 3.9 | dB  |  |
| OMA <sub>outer</sub> of each Aggressor Lane              |                |            | 0.5 |     | dBm |  |

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB for an extinction ratio of ≥ 4.5 dB or TDECQ < 1.3 dB foran extinction ratio of < 4.5 dB, the OMA<sub>outer</sub> (min) must exceed the minimumvalue specified here.
- 3. C<sub>eq</sub> is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. The receiver shall be able to tolerate, without damage, continuous exposure to anoptical input signal having this average power level.
- 6. Receiver sensitivity (OMA<sub>outer</sub>), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.9 dB. It should meet Equation (1), which is illustrated in Figure 4.

```
Rx = max(-6.6, SECQ-8.0) dBm(1)Where:<br/>RS is the receiver sensitivity, and<br/>SECQis the SECQ of the transmitter used to measure thereceiversensitivity.
```

- 4. Measured with conformance test signal at TP3 for the BER equal to 2.4x10<sup>-4</sup>.
- 5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.



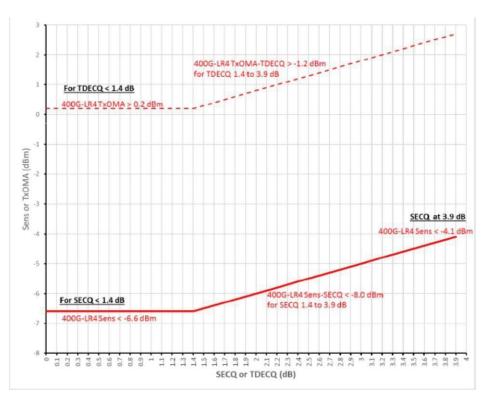
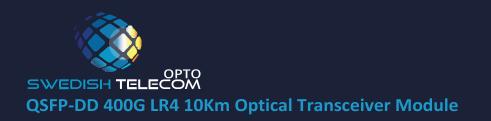




Figure 4. Illustration of Receiver Sensitivity Mask for 400G-LR4

## **11. Digital Diagnostic Functions**

The following digital diagnostic characteristics are defined over the normal operatingconditions unless otherwise specified.

| Parameter                   | Symbol       | Min  | Max | Units | Notes               |
|-----------------------------|--------------|------|-----|-------|---------------------|
| Temperature MonitorAbsolute | DMI_Temp     | -3   | 3   | degC  | Over operating      |
| Error                       |              |      |     |       | temperature range   |
| Supply Voltage Monitor      | DMI_VCC      | -0.1 | 0.1 | V     | Over full operating |
| Absolute Error              |              |      |     |       | range               |
| Channel RX Power Monitor    | DMI_RX_Ch    | -2   | 2   | dB    | 1                   |
| Absolute Error              |              |      |     |       |                     |
| Channel Bias Current        | DMI_Ibias_Ch | -10% | 10% | mA    |                     |
| Monitor                     |              |      |     |       |                     |
| Channel TX Power Monitor    | DMI_TX_Ch    | -2   | 2   | dB    | 1                   |
| Absolute Error              |              |      |     |       |                     |



#### Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

#### **12. Mechanical Dimensions**

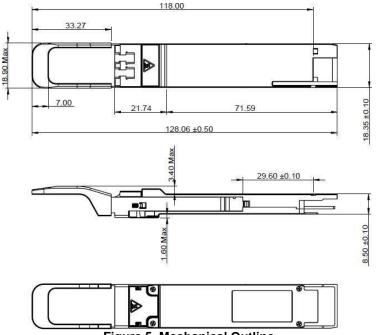
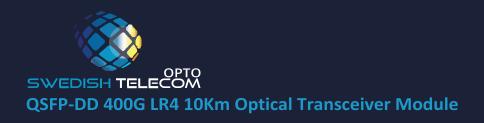



Figure 5. Mechanical Outline

#### **13. ESD**

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However,normal ESD precautions are still required during the handling of this module. This transceiver isshipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.


#### **14. Laser Safety**

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than thosespecified herein may result in hazardous radiation exposure.

#### **15. Ordering Information**

| Part Number  | Description                |
|--------------|----------------------------|
| STC-200G-XXX | 200GBASE-LR4 QSFP-DD, 10Km |

